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Abstract-In this paper, we present an integrated approach 
for robot localization, obstacle mapping, and path planning 
in 3D environments based on data of an onboard consumer­
level depth camera. We rely on state-of-the-art techniques 
for environment modeling and localization, which we extend 
for depth camera data. We thoroughly evaluated our system 
with a Nao humanoid equipped with an Asus Xtion Pro Live 
depth camera on top of the humanoid's head and present 
navigation experiments in a multi-level environment containing 
static and non-static obstacles. Our approach performs in 
real-time, maintains a 3D environment representation, and 
estimates the robot's pose in 6D. As our results demonstrate, the 
depth camera is well-suited for robust localization and reliable 
obstacle avoidance in complex indoor environments. 

I. INTRODUCTION 

Autonomous robots are designed with the ulterior motives 

that at one point, they can assists humans with tasks such as 

home-care, delivery, etc. All of these high-level tasks require 

that the robot is able to localize itself in the environment, 

detect obstacles, and avoid collisions with them by keeping 

track of their locations and planning collision-free paths 

around them. For localization and obstacle detection, an 

autonomous robot has to rely on onboard sensor information. 

Numerous sensors have been used for this purpose, including 

ultrasound sensors, laser range finders, as well as monocular 

and stereo cameras. All of these sensors sutler from short­

comings such as inaccuracy, sparseness, high algorithmic 

complexity, or simply weight or cost. Recently, depth cam­

eras operating with projected infrared patterns such as the 

Microsoft Kinect or Asus Xtion series have become available 

on the consumer market, lifting some of these limitations. 

These cameras are relatively accurate and provide dense, 

three-dimensional information directly from the hardware. 

To the best of our knowledge, in this paper, we present the 

first integrated navigation system consisting of localization, 

obstacle mapping, and collision avoidance for humanoid 

robots that is based on depth camera data. 

For a humanoid robot acting in complex indoor envi­

ronments containing multiple levels and 3D obstacles, a 

volumetric representation of the environment is needed. 

Our approach relies on a given 3D environment model in 

form of an octree [1] that contains the static parts of the 

environment. In this representation, the robot estimates its 

pose using Monte Carlo localization based on acquired depth 
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Fig. 1. Top: Nao humanoid robot with a depth camera on its head and part 
of the multi-level environment. Bottom: 3D representation of the scene used 
for collision avoidance. The map was constructed in real-time by turning 
on the spot for about 60°, thereby integrating 28 depth images. 

camera data. Given the estimated 6D pose of the humanoid 

and a sequence of depth images, our system continuously 

builds a local 3D representation of the current state of 

the environment containing also non-static obstacles. This 

learned octree-based representation is then used for real-time 

planning of collision-free paths. 

Fig. 1 shows a motivating example of our system. The 

upper image depicts a humanoid navigating on the top level 

of a two-story environment. The lower image shows the 

robot's internal representation of its pose estimate and the 

local environment model, both maintained from depth camera 

measurements. In the environment model, one can clearly 

identify objects such as the table, the cabinet, the plant, or 

parts of the railing. The map was constructed in real-time 

by turning on the spot for about 60° , thereby integrating 28 

depth images. 

After presenting the basic techniques and our extension 

towards depth camera data, we illustrate the performance of 

our system for a Nao humanoid equipped with a Asus Xtion 

Pro Live sensor on top of the head. During the experiments, 

the robot navigated in a 3D environment consisting of 

mUltiple levels and containing several static and non-static 

obstacles. We thoroughly evaluate our approach and show 

results that demonstrate that our system leads to robust 
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localization and reliable obstacle avoidance in real-time. We 

conclude that such consumer-level depth cameras are well­

suited for reliable humanoid robot navigation in complex 

indoor environments. 

II. RELATED WORK 

The work most closely related to our approach has been 

recently presented by Biswas and Veloso. The authors de­

veloped an approach for indoor robot navigation based on 

depth camera data [2]. They proposed to sample points from 

the depth data belonging to vertical planes. These points 

are down-projected to 2D and used to update the particle 

filter that estimates the robot's pose. The observation model 

hereby matches the projected points to a given map of walls. 

The projected points are further used for obstacle detection. 

One disadvantage of this approach is that it discards the 

3D information of the sensor data. Therefore, robots using 

this techniques cannot navigate in multi-level environments. 

Hornung et al. presented a 3D localization method for 

humanoid robots based on 2D laser data [3]. Similar to 

our method, they applied a particle filter to estimate the 

6D pose of the robot in a given 3D volumetric map of the 

environment. Our work can be seen as an extension as our 

approach does not require an expensive laser range finder 

but uses comparably cheap depth cameras. Furthermore, our 

system additionally contains 3D obstacle mapping and path 

planning capabilities. 

Baudouin et al. proposed an approach to footstep planning 

and collision avoidance in 3D environments [4]. While the 

approach works in real-time and allows the robot to step over 

low obstacles, it relies on very accurate off-board sensing and 

applies a sampling technique for path planning that can result 

in arbitrarily suboptimal paths. 

Nakhaei and Lamiraux presented a technique to 3D en­

vironment modeling from stereo data for humanoid motion 

planning [S]. Similar to our approach, the authors proposed 

to use a probabilistic voxel grid. However, their system has 

no localization component, which leads to inconsistencies in 

the learned map. 

Ozawa et al. developed a system that relies on stereo image 

sequences to construct a dense local feature map [6]. This 

system performs real-time mapping with a humanoid robot 

based on 3D visual odometry for short trajectories. 

Pretto et al. estimate the 6D pose of a humanoid as well 

as the 3D position of features in monocular camera data [7]. 

The authors designed feature detectors specifically to be able 

to deal with the effect of motion blur that typically occurs 

during humanoid walking. However, because the detected 

features in the monocular image are sparse, the approach is 

unsuitable for reliable obstacle detection. 

Einhorn et al. presented an approach to 3D scene re­

construction and obstacle detection based on monocular vi­

sion [8]. The authors propose to track features in consecutive 

images and recover the features' positions from the ego­

motion of the camera. This requires an accurate estimate of 

the camera pose, which the authors obtain from odometry of 

a wheeled robot. The system also relies on sparse features 

for obstacle detection. 

Chestnutt et al. use 3D laser data acquired with a con­

stantly sweeping scanner mounted on a pan-tilt unit at the 

humanoid's hip [9]. The authors fit planes through 3D point 

clouds and construct a 2.SD height map of the environment. 

Afterwards, they distinguish between accessible areas and 

obstacles based on the height difference. Such a sensor 

setup can only be used on robots with a significantly larger 

payload than the Nao humanoid. Gutmann et al. also build a 

2.SD height map given accurate stereo data and additionally 

update a 3D occupancy grid map to plan navigation paths 

for the robot [10]. 

Kiimmerle et al. developed a laser-based localization 

system for so-called multi-level surface maps for wheeled 

robots [11]. These maps store multiple levels of the scene 

per 2D grid cell and compactly represent 3D environments. 

However, they suffer from the disadvantage, that they do 

not provide volumetric information which is needed for 

humanoid navigation. 

Stachniss et al. presented a simultaneous localization and 

mapping system (SLAM) to learn accurate 2D grid maps 

of large environments with a humanoid equipped with a 

laser scanner located in the neck [12]. Such a map was 

subsequently used by Faber et al. for humanoid localization 

and path planning in 2D [13]. During navigation, the robot 

avoids obstacles sensed with the laser scanner and ultrasound 

sensors located at the hip. Obstacles with a lower height 

are not detected which potentially leads to collisions. Also 

Tellez et al. use laser data to construct a 2D occupancy grid 

map in which paths for a humanoid are planned [14]. The 

authors use data from two laser scanners mounted on the 

robot's feet. All these approaches insufficiently represent the 

environment for navigation tasks in indoor scenarios with 

complex 3D structures. 

Recently, approaches have been presented that perform 

SLAM with RGB-D cameras [IS, 16, 17]. These approaches 

are optimized for small workspaces such as desktops or small 

rooms but not for larger environments. Further, they are 

algorithmically challenging and require that the camera can 

see enough texture or structure to match the observations. 

Consequently, they are not appropriate for scenarios like 

ours, where the camera faces the lowly-textured floor most 

of the time, in order to sense obstacles in the robot's way. 

III. NAVIG ATION B ASED ON DEPTH CAMER A D ATA 

In this section we describe our approach to robot localiza­

tion, mapping, and path planning. 

A. Environment Representation 
To enable modeling of multi-level environments contain­

ing obstacles of various shapes we use the octree-based 

mapping framework OctoMap [1]. This map representation 

partitions the space into free and occupied voxels where each 

voxel is associated with an occupancy probability. Unknown 

space is implicitly modeled by missing information in the 
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Fig. 2. Photograph of the environment in which we carried out the 
experiments and the corresponding map constructed with a CAD software. 
The map contains only the static parts of the environment. 

tree. As opposed to a fixed size voxel grid map, this tree­

based approach allows the map to grow dynamically and is 

compact in memory as it only allocates memory as needed. 

Bounded occupancy values enable to appropriately react to 

changes over time and enable a compression by pruning the 

tree, particularly in the large free areas. 

We use two ditlerent 3D maps. First, we consider a 

static map of the environment for localization and as prior 

knowledge for path planning. Fig. 2 shows an example map. 

Secondly, we maintain an additional map containing local 

obstacles, which is continuously updated based on the depth 

data acquired by the robot while walking. This representation 

is then used for path planning around non-static obstacles. 

For this process, we maintain a projected 2D map for 

efficient collision checks as in [18]. Each 3D map update 

of the local obstacle map also updates the 2D projection. 

To allow the robot to pass below underpasses and traverse 

the upper level of the environment, only obstacles within 

the vertical extent of the robot are hereby projected into the 

2D obstacle map. Further, we filter out points corresponding 

to the floor, prior to map updates. Therefore, we consider a 

point's normal from its local neighborhood in the point cloud 

constructed from the depth image. 

B. Probabilistic 3D Map Update 
We integrate sensor readings into the local map by using 

occupancy grid mapping in 3D as in [l]. The probabil­

ity P( n I Zl:t) that voxel n is occupied at time t is recursively 

computed given all sensor measurements Zl:t according to 

P(n I Zl:t) = (1) 

[1 + 1 - P(n I Zt) 1 - P(n I Zl:t-1) P(n) ] -1 

P(n I Zt) P(n I zl:t-d 1 - P(n) , 

where Zt is the measurement, P( n) is the prior probabil­

ity (typically this value is assumed to be P( n) = 0.5), and 

P(n I ZI:t-1) is the previous estimate. The term P(n I Zt) 
denotes the likelihood of voxel n being occupied given the 

measurement Zt. Here, we employ a beam-based inverse 

sensor model that assumes that endpoints of a measurement 

correspond to obstacle surfaces and that the line of sight 

between sensor origin and endpoint does not contain any 

obstacles. Thus, we update the last voxel on the beam as 

occupied, and all the others up to the last one as free and 

use corresponding likelihoods for P(n I Zt). For efficiency, 

we use the log-odds formulation of (I) to update the map. 

C. Localization 
For localization in the 3D model, we extend the Monte 

Carlo localization (MCL) framework by Hornung et al. [3], 

which was originally developed for data of 2D laser range 

finders, to depth camera data. Hereby, the humanoid's 6D 

pose is tracked in the 3D world model. The humanoid's torso 

serves as its base reference frame. 

The pose x = (x, y, z, i.{J, B, 'ljJ) consists of the 3D position 

(x, y, z) with roll, pitch, and yaw angles (i.{J, B, 1jJ). For robust 

localization while walking, we combine 3D range data from 

the depth camera located on top of the head, attitude data 

provided by an inertial measurement unit (IMU) in the chest, 

and odometry data. 

Odometry is computed from measured joint angles with 

forward kinematics and integrated in MCL with a Gaussian 

motion model. In the observation model, we consider the 

data of the humanoid's sensors. The depth camera provides 

a depth image, that we convert to a set of beams with 

ranges rt, the joint encoders provide a measurement Zt of 

the humanoid's torso above the current ground plane, and 

the IMU estimates the roll and pitch angles CPt and et. 
We assume that all these measurements are independent 

and combine them into one unified observation model to 

compute the likelihood of an observation 0t: 

p(Ot I Xt) = p(rt, Zt, CPt, et I Xt) = 

p(rt I Xt) . p(Zt I Xt) . p(cpt I Xt) . p(et I Xt). 
(2) 

Here, Xt is the robot's estimated state. 

For evaluating the range sensing likelihood p(rt I Xt), we 

sample a sparse subset of beams from rt (see below). We 

assume that the sampled measurements rt,k are conditionally 

independent and determine the likelihoods of the individual 

beams p(rt,k I Xt) by ray casting in the volumetric 3D 

environment representation. Hereby, we extract for each 

beam the expected distance to the closest obstacle contained 

in the map, given the robot pose, and compare it with the 

actually measured distance. To evaluate the measurement and 

to model the measurement uncertainty of the sensor, we use a 

Gaussian distribution. Similarly, we i
_
ntegrate the torso height 

Zt as well as the roll CPt and pitch Bt provided by the IMU 

with a Gaussian distribution based on the measured values 

and the predicted ones. 

To sample the beams rt,k in the ray casting step, our sys­

tem classifies all end points of the beams rt into ground and 

non-ground parts. Therefore, it pre-filters candidates based 

on their height in the robot's internal coordinate system. Then 

it obtains the beams hitting the ground by finding dominant 

planes with RANSAC over local neighborhood normals. Our 

system uses this information for uniformly sampling half the 

beams from non-ground parts and the other half from the 

ground. Thus, we compensate for the fact that the camera 

faces mostly the floor area for better obstacle avoidance. 

Beams hitting the floor, however, can provide no information 

for estimating translation in the horizontal plane, which is 

typically more important than height or pitch and roll. 
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Fig. 3. Left: Nao navigating in the lower level of our environment between obstacles (Scenario 2). Middle: Static (blue) and local (red) 3D map constructed 
by the robot while walking. Right: Two-dimensional projection of the local map used for collision avoidance and path planning. The lines show the robot's 
odometry estimate, the estimated pose of our localization system, and the ground truth. The arrow indicates the robot's pose corresponding to the left 
image. The numbered circles in the figure indicate obstacles that are not part of the static map. As can be seen, our navigation system localizes the robot 
accurately and leads to reliable navigation behavior. 

D. Path Planning and Collision Avoidance 
For planning collision-free path, we consider the static 

map of the environment as prior knowledge, as well as the 

locally constructed map based on depth camera data, which 

contains also non-static obstacles. 

In general, one could also plan collision-free footsteps 

or whole-body motions for the humanoid on the learned 

3D map. However, planning motions in 3D is still a very 

complex problem and requires either high computation times 

or provides arbitrarily suboptimal solutions. For sake of real­

time performance and robustness, we therefore rely on a 

projection of the 3D map to the floor. To be able to traverse 

underpasses, we restrict the projected area to the size of the 

robot in vertical direction. This is the area where collisions 

are potentially hazardous for the robot. Everything below and 

above can be safely ignored. Note that this is not the same as 

maintaining a simple 2D map. When the robot's z-coordinate 

changes, the projection is updated accordingly. This is only 

possible because we keep the 3D structure, hence enabling 

navigation in multi-level scenarios. 

For collision checks in the projected map, we assume a cir­

cular robot model. This assumption prevents the robot from 

passing very narrow passages but allows to perform collision 

checks in constant time, once a distance transform of the 2D 

obstacle map is computed. These distance transforms can be 

computed in real-time. 

To compute a collision-free path to the goal location, our 

system uses the A * algorithm. In case of a map update, it 

checks whether the previous plan is still valid and replans 

the path only if necessary. 

IV. EXPERIMENTS 

We carried out a series of experiments demonstrating the 

capabilities of our navigation system based on depth camera 

data. All experiments were carried out with a Nao (V4) 

humanoid by Aldebaran Robotics. Nao is 58 cm in height, 

weighs 5.2 kg and has 25 degrees of freedom. With the 

current firmware of the robot, it is able to walk up to 10 cm/s. 

We modified the head and mounted an Asus Xtion Pro Live 

RGB-D camera on top of it (see Fig. 1). The camera has 

a field of view of 58° horizontally and 45° vertically. The 

camera is mounted on the robot's head in a way such that 

its optical axis faces the floor in a 30° angle while walking. 

We found this to be the best compromise between observing 

the near range for obstacle detection and looking ahead for 

localization and path planning. The increased weight due to 

the mounted camera destabilizes the walking behavior of the 

robot. We therefore added thin plastic sheets to the robot's 

feet to increase the friction. 

To allow for real-time performance, we set the camera's 

resolution to 320 x 240 and update the map from sensor 

data at approximately 6 Hz. All processing is done on a 

standard quad core Pc. We conducted the experiments in 

a multi-level environment, scaled-down to match the size 

of a Nao humanoid (see Fig. 2). We sketched the structure 

in a 3D CAD software and converted it to an OctoMap. 
This model is used for localization. Note that the 3D model 

does not perfectly match the actual scene due to imper­

fection in constructing the environment and, furthermore, 

the scene will contain non-static obstacles not included in 

the 3D CAD model. Therefore, our approach constructs a 

local map from depth camera data during navigation in real 

time. A video demonstrating our approach can be found at 

http://hrl.informatik.uni-freiburg.de. 

A. Localization Accuracy 
First, we performed a series of experiments to evaluate our 

localization system. We compared the resulting pose estimate 

to the ground truth in the 2D plane, which we obtained by 

tracking the humanoid with two stationary SICK laser range 

finders [19]. Consequently, we evaluated the translational 

error in the horizontal plane. 

We conducted experiments in three ditlerent scenarios. In 

Scenario 1, the robot navigated on the lower level of our 

environment. Except for the two laser range finders used to 

record the ground truth and their power supplies, the static 

map closely resembled the actual scenario as can be seen 

in Fig. 2. Scenario 2 was similar to Scenario 1 but we 
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Fig. 4. Top: Local three-dimensional map (red) constructed while the 
robot was walking on the top level of the environment (Scenario 3), 
along with the static map (blue). Bottom: Two-dimensional projection 
of this map used for collision avoidance and path planning. As can be 
seen, also obstacles not contained in the original static representation are 
represented accordingly (numbered circles). The figure further shows the 
robot's trajectory estimated by our algorithm (red) and the ground truth 
(blue). Odometry has been left out for sakes of clarity. 

additionally placed several obstacles such as books, balls, 

baskets, and shelves in the scene (left image in Fig. 3). 

These obstacles are not part of the map used for localization 

and therefore are expected to decrease the performance. The 

robot followed a similar path in Scenario 1 and 2 (right image 

in Fig. 3). In Scenario 3, the robot walked two circles on the 

top level of the environment where we also placed unmapped 

obstacles such as a table, a plant, and a cabinet in the scene 

(see Fig. 1). 

For all scenarios, we manually initialized the localization 

system from the true pose. We used 500 particles for tracking 

the robot's pose and sampled 100 points from the depth 

image for ray casting as described in Sec. III-C. Fig. 3 and 

Fig. 4 depict the trajectories of the pose estimates and the 

ground truth on top of the projected obstacle map. As one can 

see, the estimated pose closely resembles the ground truth. 

Fig. 3, also shows the robot's odometry as reference which 

is clearly useless for reliably executing navigation tasks. 

To evaluate the localization results quantitatively, we com­

puted the mean error as well as the standard deviation over 

the robot's trajectory for each of the three scenarios. Table I 

summarizes the results. As can be seen, our system leads to 

robust and accurate pose tracking. As expected, the accuracy 

decreases slightly in Scenario 2 compared to Scenario 1, due 

E � 
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TABLE I 
AGGREGATED LOCALIZATION ERROR FOR THREE SCENARIOS 

16 
12 
8 
4 

Scenario I 
Scenario 2 
Scenario 3 

50 

mean error [m] std. dev. [m] 

0.07 
0.09 
0.07 

100 
time [s] 

0.04 
0.07 
0.05 

150 200 

Fig. 5. Localization error as mean and standard deviation for five runs in 
scenario 1. 

to the additional obstacles. However, for all scenarios, the 

average accuracy is still better than 1 decimeter. 

Additionally, as Monte Carlo localization is a probabilistic 

technique, we repeated the accuracy evaluation five times 

over the same data set. Here, we used the same raw sensor 

data and initialization as for Scenario 1 and recorded the 

pose estimation errors relative to the ground truth. We then 

computed the mean error and standard deviation over the 

trajectory parametrized by time. Fig. 5 shows the results. 

The error is generally small. For the time between 50 s and 

130 s and 170 s to 180 s, the average error increased from 

approximately 6 cm to 10 cm. Here, the robot navigated in 

the long hallway part parallel to the walls and the camera 

observed only little structure in the environment that could 

help reducing the translational uncertainty. A larger field of 

view or an active sensing approach could help in this case. 

B. Mapping 
To demonstrate the mapping and obstacle detection ca­

pabilities of our system, we consider Scenarios 2 and 3 

described in the previous section. Fig. 3 and Fig. 4 show the 

3D map constructed from the depth camera data while walk­

ing (red), as well as the static map of the environment (blue). 

It is clearly visible that the constructed map closely follows 

the structure of the reference map. Furthermore, it also 

includes all the obstacles that are not part of the static map. 

The figures also show the 2D projection of the constructed 

3D map used for collision avoidance. In both maps, the 

structure of the non-traversable area is clearly identifiable. 

C. Path Planning and Obstacle Avoidance 
In the last experiment, we evaluate the ability to react to 

changes in the environment and plan collision-free paths also 

with non-static obstacles. Fig. 6 shows a scenario in which 

the robot reacted to a dynamic obstacle during walking. 

The left column shows the state of the projected obstacle 

map along with the robot's pose and the planned path. The 
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Fig. 6. The robot avoids a dynamic obstacle. The first row shows the robot"s 
initial path to the goal with the corresponding camera image. Then, a human 
blocks the robot"s path, forcing the robot to detour (second row). The robot 
follows the updated path to the goal (last row). The camera images show 
an overlay of the current obstacle map (red, best viewed in color). 

right column depicts the current RGB camera image with an 

overlay of the state of the constructed 3D map. Initially, the 

robot planned a straight path to the goal location through 

the empty space (first row). While walking, a human entered 

the scene blocking the robot's initial path (second row). The 

robot immediately updated its obstacle map and planned a 

collision-free path to the goal. The robot followed that path 

accurately (third row) until it reached the goal. 

V. CONCLUSIONS 

In this paper, we demonstrated that affordable, consumer­

level depth cameras are well-suited sensors for robot naviga­

tion tasks in complex indoor environments. We presented 

a real-time navigation system that allows to estimate a 

humanoid's 6D pose while walking and to map the scene 

in a local 3D map. We described how our system can be 

used for planning collision-free paths through scenes with 

static and non-static obstacles. 

In experiments with a N ao humanoid equipped with an 

Asus Xtion Pro Live RGB-D camera, we thoroughly evalu­

ated the performance of our system. As the results show, our 

approach leads to accurate localization estimates and reliable, 

collision-free navigation in the acquired 3D map. In the 

future, we will extend the approach to multi-level collision 

maps for different parts of the robot as in [18]. Hence, we 

will lift the circular robot model assumption made in this 

paper and allow the robot to better pass narrow passages. 

Of course, depth cameras also have drawbacks. In the near 

range of the camera (closer than 50 cm), no depth data is 

available. In this case, we can fall back to applying collision 

detection approaches based on monocular vision data [20]. 

However, we rarely observed this problem in practice. 
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